B.Sc. DEGREE EXAMINATION - STATISTICS
 SIXTH SEMESTER - APRIL 2015

ST 6604/ST 6601 - OPERATIONS RESEARCH
Date : 23/04/2015
Dept. No. \square Max. : 100 Marks
Time : 09:00-12:00

PART - A

Answer ALL the questions:
($\mathbf{1 0} \times 2=20$ marks)

1. What is operations research?
2. Define Slack and Surplus variables in LPP.
3. Explain optimum basic feasible solution.
4. Define artificial variables.
5. What is Transportation problem?
6. Explain Transshipment problem.
7. What is CPM?
8. Write any two difficulties in using Network.
9. Explain Decision under uncertainty.
10. Define Saddle point.

$\underline{\text { PART - B }}$

Answer any FIVE questions:
($5 \times 8=40$ marks)
11. What are the different phases of Operations Research? Explain.
12. Use the graphical method to solve the following LPP.

Maximize $\quad Z=2 x_{1}+3 x_{2}$; subject to the constraints;

$$
\begin{aligned}
& x_{1}+x_{2} \leq 30, x_{1}+x_{2} \geq 0, x_{2} \geq 3, \\
& 0 \leq x_{1} \leq 20, \text { and } 0 \leq x_{2} \leq 12 .
\end{aligned}
$$

13. Describe Big M method in solving a LPP.
14. Use two-phase simplex method to maximize
$Z=5 x_{1}+3 x_{2}$ subject to the constraints;
$2 x_{1}+x_{2} \leq 1, x_{1}+4 x_{2} \geq 6$, and $x_{1}, x_{2} \geq 0$.
15. Obtain an initial basic feasible solution to the following transportation problem using the northwest corner rule.

	D	E	F	G	Available
A	11	13	17	14	250
B	16	18	14	10	300
C	21	24	13	10	400
Requirement	200	225	275	250	

16. Give the mathematical formulation of an assignment problem.
17. Write the rules of network construction.
18. Write notes on (a) Laplace Criterion,
(b) Minimax regret criterion.

PART - C

Answer any TWO questions:

19. a) Obtain all the basic solutions for

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}=5 \\
& 2 x_{1}+x_{2}+2 x_{3}=4 .
\end{aligned}
$$

b) Use penalty (or Big M) method to

Maximize $\mathrm{Z}=6 \mathrm{x}_{1}+4 \mathrm{x}_{2}$ subject to the constraints:

$$
\begin{align*}
& 2 x_{1}+3 x_{2} \leq 30, \\
& 3 x_{1}+2 x_{2} \leq 24, \\
& x_{1}+x_{2} \quad \geq 3 \\
& x_{1} \geq 0 \text { and } x_{2} \geq 0 . \tag{6+14}
\end{align*}
$$

Is the solution unique? Verify graphically.
20. (a) What is the difference between simplex method and dual simplex method? Explain.
(b) Find the initial basic feasible solution to the following transportation problem using Vogel's Approximation method, given the cost matrix.
$\left.\begin{array}{rllll|l} & \mathrm{D}_{1} & \mathrm{D}_{2} & \mathrm{D}_{3} & \mathrm{D}_{4} \text { Supply } \\ S_{1} & 20 & 25 & 28 & 31 \\ S_{2} & 32 & 28 & 32 & 41 & 200 \\ S_{3} & & 18 & 35 & 24 & 32\end{array}\right] 1100$

Demand: $150 \quad 40 \quad 180170$
21. (a) Explain how will you solve the 2×2 game when there is no saddle point.

Player B
(b) Solve the following game graphically. Player $A\left[\begin{array}{lll}1 & 3 & 4 \\ 5 & 2 & 6\end{array}\right]$.
22. (a) A project has the following time schedule:

Activity	Time in weeks
$1-2$	2
$1-3$	2
$1-4$	1
$2-5$	4
$3-6$	8
$3-7$	5
$4-6$	3
$5-8$	1
$6-9$	5
$7-8$	4
$8-9$	3

Construct PERT network and compute:
(i) Total float for each activity: and
(ii) Critical path and its duration.
(b) Explain PERT in detail.

